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We investigate the first fundamental problem of the theory of elasticity for a rectangle. 

Assuming that its solution is a function whose fourth derivatives are summable with 

degree p > 2 over a rectangle, we prove that this solution can be expanded into a series 

in eigenfunctions of the problem considered, the series converging uniformly within the 
rectangle. We also establish how the series converges on the boundary and show that the 

expansion is unique, 

1, Let us consider the first f~damental problem of the theory of elasticity for the 
rectangle ABED (Fig. 1). We assume that stresses are absent along B c and D (they 
could always be removed by solving a problem for a strip). The stress function u of the 
investigated problem is biharmonic in the rectangle ABC2 and should therefore satisfy 
the following conditions: U, = U, s 0 on BC and AD, u, = Ip- (PI and 

YI ku =7t)_ (Y) on AB, VW = TP+ (Y) and 
3 I c urv =9+(Y) on 0. We shall also assume that 
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hold. Selecting out of the stress function u the factor corresponding to the unbalanced 

part of the stresses on AB and CD , we introduce the function 

u*=+ys jtp+d& S8,*ds- 
-1 -1 
1 1 

- $(h-4 p+as+ $-f(h--r) s **as 

andputl,b=U-/&. 
--I -1 

Obviously, u satisfies the following boundary conditions: 

r&t = UxyZiEi 0 onBCandm (1.2) 
in CD we have 1 

UYV=(P+(Y)-+ sv,d+/ ~rp,~~~=cD,(y~ 0 -3) 
-1 -1 
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1 

U m=*+(Y)-+ 5 *+ ds (1 - YY = VP+ (Y) 
-1 

from which we easily derive 

1. 1 1 

S cD+dy=O, s 
‘cD+ydy==O, 5 ‘IT, dy = 0 

-1 -1 -1 

which shall be used later. On AB we have 
1 1 1 

r.+,=(p_(y)-+ j 'P,~s-&/ 1 cp+sds---3hy $+ds=Q_(y) 
s 

-1 -1 -1 

1 

U xl/ = $_ w - ; s 4, ds (1 - YZ) = ‘I”_ M 

-1 

Relations (1.1). (1.6) and (1.7) together yield 
1 1 1 

I 
' 0_ds= 0, 

s 
‘0_sds==O, %_ds=O 

-1 
s 

-1 -1 

(1.4) 

(1.5) 

(1.6) 

U-7) 

(1 *f9 

Now we shall find the values of I,4 , U, and U, on the contour ABCD. The function 
24 is defined with accwacy of up to a linear term, therefore we can assume that at some 
pointA *say. u =u, =u, =o. By (1.6) and (1.7) we then have 

‘! a! 
uv = 

s 
0_ds, u, = 

s 
Y_ ds = j3 (y) on AB (1.9) 

-1 -1 

At the point B we have, by (1.6). 24, = U, = 0 , therefore from (1.2) it follows that 

u, = uy E 0 on BC (1.10) 
Further we have on CD y 

. 
uy= 0+ds, 

s 
ux=~Y+ds=fI(y) (1.11) 

1 

ESy (1.11) and (1.5) we haf . atD , U, =u, = 0 , consequently 

u, = U,, SE 0 on AD (1.12) 

Thus first derivatives of ~1 are defined along the whole contour ABCD . Further we 

Y 
1.C = 

s 

! l Y 
u,ds = SS 0_ dsI ds = 

s (Y-S)@_ds=f(Y) on AB (1.13) 
-1 -1-l -1 

At the point B we have, by (1.8). U = 0 and 

UE 0 (1.14) 

on BC in accordance with (1.10). On CD we have 

u=juvd.s=~~O+dsIds =g(y-s)O+ds=h(l) (1.15) 

and atD we have U = 0 by (1.5). Finally, from (1.12) it follows that 
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us 0 on AD (I .I@ 

Thus (1.9) to (1.16) yield the following boundary conditions for the biharmonic func- 

tion U 
u lu-=fl = 0, 

u I--h = f (d u 1x-h = f% (y>, 

If the load of the plate is symmetric in 

= fr (Y), and obtain, finally, 

UY L/=*1 = 0 

ux 1%=--h = fs (y), 

X . we can put fs (v) 

A% = 0; u IV=*1 = 0, uy lylfl= 0, u Ixmfh = f(y), 

kc 1x-h = fl (!I) 

= f (!I), --Is (!I> = 
(1.17) 

2. Problems of the type (1.17) are usually solved using the method of separation of 
varaibles, and solution of (1.17) is therefore sought in the form 

where U ,Jy) are eigenfunctions of the problem 

($v - 2haa” + h4a = 0, a Jr*1 = 09 a’ lpf1 = 0 

A requirement that the boundary conditions should be satisfied, leads to expansions 

f(Y) = 2 ck cos Skhak (!i), fl (y) = - 2 ck5k sin Akhak (!d (2.2) 
k k 

Thus, solution of (1.1’7) reduces to the problem of expanding a pair of arbitrary func- 

tions 4 ( 9) and fl( y) into series (2.2). 

This problem was first posed by Papkovich [l] and its general form is: to find a simul- 
taneous expansion of two mutually independent real functions 41 (M and &( I/) into 
series of the form 

fs (Y) = 3 Ck& [ak (r/)1 P f&d = &k’% [% (&I 

Here ck are complex ckmfficients identical in both expkions. L I and La are two 

distinct linear operators whose form depends on the actual problem, and a, (E/) are the 
eigenfunctions of this problem. 

In the present paper we develop a novel approach to investigations of problems of the 
type (1.17). We first obtain a solution of (1.17) in the form (2.1) inside the rectangle 
ABC9 and use this to obtain a solution of (2.2). 

3. Let the fourth derivatives of the solution u of (1.17) be summable over the rec- 

tangle ABC3 with degree p > 2. (Question of restrictions which must be imposed on 
4 and 41 in order for the required condition to hold, demands a separate investigation 

and shall not be considered here 

Let us extend 24 to a strip I&/ 1 

. 

~2 1. To do this, we shall use an even smoothing func- 
tiong(x), 1x1 ~;hequaltounitywhen Ixlsh-6, 0<6<h/2,infinitelydiffer- 
entiable and vanishing with all its derivatives at I x 1 = ?z , and we shall also put 

Ul (x, Y) = 
i 

u(xv dg@) (I+m 
0 (I x I > h) 

Function U1 (;G. I/) defined in this manner on the strip 1 p 1 s 1 , is a solution of the 
problem 

A’uI = cp (xvz4; RIYP*l= 0, UlUlI/-*1= 0 (3.1) 
where the function 
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rp(x, Y) = A”(ug) = 4(u,,,+ %m) g’ + 2 (3% + q,7,) g” + 4u,g”+ .grv (3.2) 

differs from zero only when h - 6 c 1x1 <h and is an even function of x. 

Applying the Fourier transformation in x to (3.1). we reduce it to an ordinary differ- 
ential Eq. 

(u*)IV - 2h2 ( uyq + h+P = ‘p* (y, h), u* /p*1= 0, (ZP)’ lllS*l = 0 (3.3) 
where 

u* (y,h) = - Gz 5 u1 (r, y) e-“=dx, ‘p” (y,h) = --& y cp (x, y) cos h:c ax 
11-S (3.4) 

Differential opera;: (3.3) has an enumerable set of simple eigenvalues, which satisfy 
the Eq. 

D (A) = (A + shhchh) (A - shAchk) = 0 (h # 0) (3.5) 
Corresponding eigenfunctions are as follows : 

dk(‘) (y) = h#)y sh hk(l$t/ + sh *h,((l) ch I.,($, if hk(‘) + sh ktr(l) ch hk(r) = G (3.6) 

akc2) (y) = hk(2)y ch hk(2)y - ch2 At@) sh h,@)y, if hk(2) - sh hrt2) ch hkc2)= o (3.7) 

We note that Eq. (3.5) and the root Ak always have associated roots - )Cr ,A, and 

-x,, and, that the roots lying in the first quadrant of the x -plane have the following 

asymptotic Eqs. : 

J.,(l) = l/,111 (3n -/- 4Im) + i (3d4 + krc) + 0 (k-l Ink) (3.8) 

h,(2) = ‘/,ln (37. + 4/a-c) + i (ad4 + kn) + 0 (k-’ In k) (3.9) 

We shall now use the Green’s function to invert the operator (3.3). If G( z/, r) , A) is 
the Green’s function of (3.3), then we have by definition 

1 

* qy, A)= 
I 

G(Y, rlt h)cp"(rl, h)drl (3.10) 
-1 

and G(y, TJ , A) has the form 

G (y, q, A):= & bh h ch h. ch h (y + rl) - (3.11) 

where the upper sign applies when y < Tj , and the lower one when g > ‘TJ, and 

a(‘) (y) = hyshhy + sh2Achhy, a(?) (y) = h ychhy - ch2Ashy 

From (3.11) we see, that G (Jj, TJ, )c ) is a meromorphic function of h and that the 
roots of (3.5), i.e. the eigenvalues of the operator (3.3). are its poles. It can easily be 
shown that G ( p. ?J, A) is bounded on the contours 1 h 1 = 1 ‘/,h ~?ZJC -j- inn 1 as 

follows : 1 G (y, q, h) 1 < C 1 h 1 -l, 0 < C < co, hence it can be represented (r2], 
p. 321) as the sum of its principal parts 

G (Y, Q, A) = 2 [ a&l) (Y) aP (rl) 
+ 

d2) (Y) .kC2) (ri) 

1. =I 8hr(‘)s cha lk@) (h&l) - 11) 8hk(B)s shs A&‘) ( hkt2) - h) 1 
(3.12) 

where the right-hand side series converges uniformly in E/, q and h in any finite part 
of the X-plane (here and in the following, four terms corresponding to the roots A,, -A,, 
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i a and - 1, will be denoted by a single index k) . 
Relations (3.6) to (3.9) imply that this series converges uniformly when x passes 

through the whole of the real axis. 
Since (3.12) converges uniformly in all parameters, we can insert (3.12) into (3.10) 

and perform a term by term integration. This yields 

+ 
42) iY) 

8hk@) a ahs h,js) ( xk@) - h) -5 %.i2) trl: Tp* (‘1, h)dv 
1 

(3.13) 
-1 

where the right-side series converges uniformly in g and x . 

Applying the inverse Fourier transform to (3.13) and replacing Cp’( r), A) with its 

equivalent given by (3.4), we obtain 

h(Z, y) =f p$,e'~[ 
aJP (Y) X 

--co - 8hp(1)3 chs I#) (k&l) - h) 

x s.*@)('1) 5 cp(EY '1)cosGGd~l-k 
-1 h-8 

+ 
Uk@) iY) 

8hk(2)3 sha @) (hkf2) - k) _-I 
(3.14) 

h-8 

Next we shall prove that (3.14) can be integrated term by term. It will be sufficient 
to show that ca 00 

s 2 
TI,(h)dh-+O as n--+oo 

-W k=n+l 

where Tk (A) = Tk(l) (A) + Tk@) (A) denotes the kth term under the summation sign 
in (3.14). Using (3.2). (3.6) and (3.7) we find, that 

from which 

1 T, (A) / < j Tk(l) (A) I+ 1 T/t@) (A) I< 
1 Gc2( IAl.lhk(‘)I’lhk(‘)--hl + 

1 

1 h I* 1 I$) I* 1 Lp) - li I 

follows. 

Since A lies on the real axis while )ck have asymptotic equations (3.6) and (3.9) we 
can easily show that 

bk- hl=lb - A. I’!’ 1 hk - h II’* > a 1 h I”1 1 hk I*” (a>O) 

Finally we have 
1 T, (h) 1 < c3 1 a I-*” (I hk(l) I-*” + 1 hkt2) I+) 
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In rhe folIowing we shall as&me that j Xi < rZ - 6 ~ C~ang~g rhe order of integratiot~ 
in (3, Es%), we crbtain 
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from the derivatives, we obtain 

(3.19) 

al4 
-- --k2 ae ihk3u )I EPh uk (q) dq 

Passage to the limit under the integral sign in the right-hand side of (3.19) is valid, 
since by the imbedding theorem ( [4], p. 78) all derivatives of U up to the third order 

inclusive, are continuous. Since uniform convergence of (3.18) in 6 is obvious, provided 

that x does not approach the boundaries 1 x 1 = h , therefore such a termwise passage 

to the limit is possible, in which uniform convergence in the remaining parameters will 

be preserved. Let us introduce the notation 

. -.Ak(l)h 1 
p = - le 

4hkt1j3 ch’ h&l) SC 
s +2++ i&(l) $+ 

+ 2ihk”’ G- A&(‘: $ - ihk(‘j3u) lEsh ak(l) (q) dq (3.20) 

. -iX,@)h 1 

c,ta = - le 

4A.k(2) 3 sha 1ikt2) S( 
’ Z$+2-$$+ihk’2’++ 

-1 
+ 2ih1,C2) aat4 -- -- 

iw! 
(3.21) 

Then (3.22) 

u (2, y) = ; [ ck%k(‘) (y) c‘,s hk”)a: + ck(2)a,(“) (y) co9 hkt2b] (Im AL > 0) 

k-1 

Series (3.22) converges uniformly when 1 x 1 <h . Moreover, we see from (3.20) and 

(3.21) that this series can be differentiated in both variables any number of times and, 
provided that 1 xl <h , h t e resulting series will remain uniformly convergent . 

4, Let us now investigate the behavior of (3.22) on the boundaries 1.~1 = h.. From 
(3.20) and (3.21 with (3.6) to (3.9) taken into account, it follows that c,=o (e-“X k-““). 
therefore on I I X = h the k- x terms of the series will be of the order k”c’s ch d, y. 
Consequently (3.22) converges uniformly when I x I = h and I y( c 1 . Since for ]r/ 1 = 1 
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all terms of (3.22) become identically zero, therefore the series also converges at the 
corners [x I= h, , /VI= 1 . Thus we have 

f (zy) = 5 [c*(l) c0&wza,~‘~ (y) + Q(2) cos h,wza*(2) (y)l (h&>o) i4”) 
k=l 

which converges uniformly when Iv 1 < 1 . Let us differentiate (3.22) with respect to x 
and let us transfer the first n terms to the left-hand side. 

-$ + gt ]Q)h ,(t)a,(*) (y) sin h,% + ~,(a)h,(s)a,(s~ (y) sin hk(s)2] = 

=- 5 [Ck(‘)h k(l)uk(lJ (y) sin hhtl).r + ~,(s)h~@)u~@)(y) sin h,@)z] (Im hk > O) 
k=n+ 1 

Next we shall multiply both sides of this equation by a finite, i.e. infinitely differen- 

tiable function/A(y) which becmes equal to Zero together with all its derivatives when 

11/l= 1, and integrate the result with respect to 1/ from - 1 to + 1 . Then, a repeated 

integration by parts of the right-hand side yields 

[Ck(l)hk(l)uk(i) (y) sin hk(% + ok(2)hk(2)ok(a) (y) sinh,(‘)s]} p (y) jy= 

=- s p” (y) {cfi(t)h~.(~)l,~ [ax(l) (y)] sin lLL% + 
-1 k=n+l 

+ ck(2%X(2)Iv2 [ a,c2) (y)] sin hk(2)s} dy (4.2) 

where 1, denotes indefinite integration with respect to y. We easily see that the sum 

under the integral sign in the right-hand side of (4.2). represents the remainder of the 

series converging uniformly at all x and y, i.e. when 

1x1 

1x1 Sh, and jr/lsl. Therefore 

both sides of (4.2) uniformly tend to zero in x. sh. as n-a. Putting in (4.2) 
x = h and passing to the limit as n,*a , we finally obtain 

1 

’ 
II 

fl (y) + i jck(l)hk(l) sin hk(t) hak(La(y) + 
-1 k==l 

+ ~k(~)hk@) sin h,(2~hu,(2) (y)]} p (y) dynTmO (Im hk > O) (4.3) 

for the finite function p ( y) . 

6, The method given in Section 3 does not yield explicit expressions for the coeffici- 
ents c k in (3.22). since the right-hand sides of (3.20) and (3.21) include the components 

UK< and UC: which cannot be expressed in terms of the boundary conditions (1.17J. 

Coefficients ck must therefore be obtained by some other method based on the uniqueness 
of the representation (3.221, which we shall now prove. 

The uniqueness of the representation (3.22) is equivalent to the absence of a nontrivial 
expansion of zero, Let therefore 

u (2, y) E 0 = 5 [ C~(%zJ’) (y) cos h,(‘)z + c,(%@ (y) cos ItJ$%] (5.1) 
1,=1 
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Assuming h <F, , let us consider the rectangle 1 x 1 shl , 1 r/l s 1 . When 1 x 1 <h. 

we can differentiate (5.1) any number of times with respect to both variables, hence 

is true. 
From this we infer, using the generalized condition of orthogonality of (1.9) from [5]. 

that cg cos h, h, = 0, i.e. ck = 0 (k = 1, 2,. . .) . So that a nontrivial expansion 

of a zero is impossible, and this completes the proor of uniqueness. 
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V. I, MOSSAKOVSKIl and I. I, MISHCHISHIN 
(Dnepropetrovsk) 

(Recived April 25, 1967) 

A study is made of the rolling of an elastic cylinder on an elastic foundation. The deforh 

mation of the bodies precludes the pure rolling of one body on the other. The rolling is 

accompanied by sliding. Some recent investigations contain results concerning the rol- 
ling of bodies with identical elastic properties. The earliest investigations in this area 
were conducted by Petrov p] and Reynolds pj. This problem was later studied by Fromm 

133, who confines himself to the application of Hertz’s results [4]. The resistance to roll- 

ing of a rigid body on an elastic and inelastic foundation was also investigated by Ishlin- 
skii [S].The papers of Glagolev @j] and Desoyer p] contain the general equations for the 

investigation of the rolling resistance of elastic bodies with different elastic constants. 
Glagolev solved this problem for bodies with identical elastic constants and examined 
the limidng case. Desoyer obtained a singular integral equadon for the general case and 
examined this limiting case. 

1. Herein, no restrictions are imposed on the elastic properties of the cylinder or the 


